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1. How does performing inference on the sky help? 
        • More faithful accounting of beam, FGs, and their degeneracies 
 
        • Fully exploit correlations in the data between LSTs 

 
2. Is detection theoretically possible? 
        • Even in ideal circumstances, 21 cm global signal extraction is highly  
          degenerate with FG spectral modes (c.f. Liu et al. 2012)  
 
 
        • Forward modeling of flexible but regularized 
           sky + instrument models is key to a robust 21 cm GS constraint



Why an end-to-end forward model?

A. Rodgers Memo #374 2021

• Robust signal extraction must understand 
the joint posterior between the beam, FG, 
and 21 cm signal 
 
• This requires a data model 
that starts on the sky, as 
opposed to a spectrum-based 
data model 
 
• Including the visibility sky 
integral in our data model allows us 
to fully (and properly) exploit correlations 
between LSTs

fully exploit

correlations between LSTs

See also Tauscher+, Nhan+, Rapetti+, Anstey+



What is a (Bayesian) forward model?
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How to make it differentiable?
∂P/∂θ
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automatic differentiation



Example with an interferometer 
point source + beam optimization

Kern 2022 in prep.



For now: testing degeneracies



For now: testing degeneracies
Posterior expansion via the Fisher matrix (aka the -Hessian)

Fij = −
∂2 ln P
∂θi∂θj

Cij = [F−1]ij
The full F inverse accounts for degeneracies between T21, FG, and beam.


No noise and no front-end calibration in these tests.

Can compute the Hessian exactly via automatic diff. T21

FG

B

TxF TxB

FxB



Foreground parameterization

spherical harmonics orthogonal (log) polynomials



21 cm parameterization

Cohen+2019

flattened gaussian?



Instrument parameterization: EDGES beam

Courtesy A. Rodgers & Mahesh+2021



Mock observation setup

Nfrequency = 64

Ntimes = 50

Npixel = 12288 (NSIDE=32)

no noise, no calibration



Testing for degeneracies
• T_21 (no prior), Beam (no prior), FG (known) 
• 1 LST

68% credible
marginal uncertainty on T_21



Testing for degeneracies
• T_21 (2 K prior), Beam (1% prior), FG (known) 
• 1 LST

68% credible



Testing for degeneracies
• T_21 (2 K prior), Beam (1% prior), FG (known) 
• 24 hours LST

68% credible



• FG (no prior), T_21 (no prior), Beam (known) 
• 24 hours LST

Testing for degeneracies

See also Liu+2012

68% credible



Testing for degeneracies
• FG (10% prior), T_21 (2 K prior), Beam (known) 
• 24 hours LST

68% credible



Testing for degeneracies
• FG (10% prior, m>0), T_21 (2 K prior), Beam (known) 
• 24 hours LST

68% credible



Testing for degeneracies
• FG (10% prior, m>0), T_21 (2 K prior), Beam (1% prior) 
• 24 hours LST

68% credible



Testing for degeneracies
• FG (10% prior, m>0), T_21 (2 K prior), Beam (1% prior) 
• 1 LST

68% credible



Some avenues for progress?

• Down-weight m=0 angular modes with a FG spatial covariance 
(e.g. Liu et al. 2012) 
    Do we even know this covariance accurately? 
    Requires more complex observations (smaller beams, steerable pointing) 

• Set a prior on the global signal with a P(k) detection 
    This is model dependent 

 



Summary

• Forward modeling is key to a deeper understanding of 
degeneracies between the signal and systematics, and for fully 
leveraging the statistical power in the data (e.g. multi-LSTs). 
More results on optimization and sampling to come soon… 

• Even in ideal circumstances (i.e. perfect front-end calibration, 
perfect beam knowledge, and multi-LSTs), “detection” of a 21 cm 
global signal is complicated by degenerate FG modes 
 



Cool features: gradient maps



Performance

Nfrequency = 64

Ntimes = 50

Npixel = 12288 (NSIDE=32)



