

New Insights on Cosmic Dawn Astrophysics from 21 cm Telescopes

Nick Kern Hubble Fellow

September 21, 2023 NHFP Symposium

The takeaway...

• 21 cm cosmology is a **burgeoning field**, aiming to access untapped cosmological information spanning a wide redshift range

With new upper limits, 21 cm telescopes are constraining X-ray heating models of the IGM at z > 8

 For a detection, we need new analysis frameworks that can more robustly extract the 21 cm signal amidst foregrounds and systematics

Cosmic tomography with the 21 cm line

Cosmic tomography with the 21 cm line

Measuring the signal is complicated by bright foregrounds and complex systematics...

masked by incredibly bright (x10⁵) foreground emission at low frequencies

Best 21 cm upper limits at EoR (prior to 2022)

 \mathcal{Z}

Hydrogen Epoch of Reionization Array

Hydrogen Epoch of Reionization Array

ERA

• 350 14-m dishes (0.05 km²) DeBoer et al. 2017

Observing 50 - 250 MHz (4.7 < z < 27.4)

300 m

Phase I observing campaign

Addressing instrumental systematics $k \ [h \ \mathrm{Mpc}^{-1}]$ -1.0-0.50.01.00.5 10^{16} - No Systematic Removal 10^{15} $\begin{array}{c} 10^{12} \\ H^{(k)} \\ H^{(k)} \\ H^{(k)} \\ H^{(10)13} \\ H^{(10)13}$ 15-m Group Cross - With Systematic Removal coupling - - Noise Floor 10^{9} Crost Coupling Cable Reflection Foregrounds 500 1000 1500 Kern et al. 2019 τ [nanosec]

Kern et al. 2020a

Addressing instrumental systematics

Nstikelelo Charles, U. Rhodes PhD grad Charles, **NK**, et al. 2023, MNRAS

Custom filters for mitigating poorly understood diffuse emission on calibration

Honggeun Kim, MIT PhD grad Kim, **NK**, et al. 2023, MNRAS

Custom filters for mitigating antenna feed displacement errors on calibration

Kern et al. 2019 Kern et al. 2020a Cross

coupling

Significant improvement at z=7

Analyzing full-season Phase I data

HERA Collaboration 2023

Constraints on the IGM temperature

HERA Collaboration 2023

First indication of a low-metal HMXB population*

*Assumes the dominant X-ray contribution is from HMXB see Lazare+2023

HERA Collaboration 2023

What's next for HERA?

N_frequencies, N_integrations, N_baselines (N_antenna^2), N_sky_pixels

N_frequencies, N_integrations, N_baselines (N_antenna^2), N_sky_pixels

We usually assume we know one component, while fitting for the others...

BayesLIM: the first end-to-end Bayesian forward model for 21 cm telescopes

Kern 2023 in prep.

Toy model: joint beam + point source modeling

First science from 21 cm telescopes at the EoR

• HERA's first science results are beginning to narrow down the allowable parameter space of Cosmic Dawn astrophysics!

• Near-future results from HERA Phase II will push to higher redshifts to constrain more complex IGM heating models, aiming for a 21 cm detection

• Next-generation forward model frameworks will be a paradigm shift in how we interpret an eventual first detection from HERA, with wide applicability to other 21 cm and LIM experiments more broadly

